

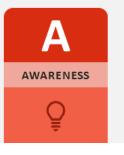
Media and the Brain: Understanding the Impact

Introduction

- Definition of media: TV, social media, news, video games
- - Importance of media's impact on the brain
- Media influences cognition, emotions, memory, and behavior (Giedd, 2012)

The Brain and Media Consumption

- - Prefrontal cortex: decision-making
- - Limbic system: emotion
- Reward system: dopamine release (Kühn & Gallinat, 2014)
- Dopamine release creates reinforcement loops (Volkow et al., 2011)

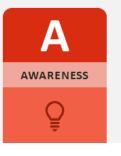

The Role of Nutrition in Media Influence

- Neurotransmitters and hormones depend on amino acids from diet
- Tyrosine (dopamine precursor) & tryptophan (serotonin precursor)
- - Poor nutrition affects neurotransmitter synthesis, increasing addiction potential

Awareness Q

The Impact of Media on Cognitive Function

- - Positive: Educational benefits, improved visual-spatial skills (Granic et al., 2014)
- Negative: Reduced focus, cognitive overload (Carr, 2010)
- Media multitasking reduces sustained attention (Ophir et al., 2009)


Emotional and Psychological Effects

- Media shapes emotions and self-esteem (Twenge et al., 2017)
- News media increases fear and anxiety (Soroka et al., 2019)
- Nutritional deficiencies (amino acids, fatty acids) impact emotional response

Media and Memory & Learning

- Media enhances memory (educational tools) or distorts it (misinformation) (Roediger & McDermott, 1995)
- Short-form content leads to shallow processing (Wolf, 2007)
- - B vitamins support memory and learning

Social Media and Brain Development

- Adolescents' brains highly influenced by peers (Steinberg, 2014)
- Instant feedback loops reinforce impulsive reactions
- Omega-3 fatty acids help mitigate negative media effects

Violent Media and Aggression

- Mixed findings on violent video games (Anderson et al., 2010; Ferguson, 2015)
- Desensitization to violence affects emotional response (Engelhardt et al., 2011)
- Serotonin (regulated by dietary protein) influences aggression control

AWARENESS

Media and Sleep Disruptions

- Blue light disrupts melatonin production (Chang et al., 2015)
- Late-night media use linked to insomnia (Cain & Gradisar, 2010)
- Magnesium and glycine improve sleep patterns

Strategies for Healthy Media Consumption

- Limit screen time (<2 hours for children, AAP 2016)
- - Engage critically with content
- Digital detoxes improve cognitive function (Davidson, 2019)
- Balanced nutrition regulates dopamine sensitivity

Conclusion

- Media affects cognitive function, emotions, and memory
- Balance and awareness are essential
- A well-balanced diet supports optimal brain function and resilience

References

Various studies cited throughout the presentation

Slide 2: The Brain and Media Consumption

- The brain processes media through the prefrontal cortex (decision-making), limbic system (emotion), and reward system (dopamine release) (Kühn & Gallinat, 2014)
- Media triggers dopamine release, creating pleasure and reinforcement loops (Volkow et al., 2011)
- Neurotransmitters and hormones play a critical role in this process. Dopamine, serotonin, and oxytocin are all synthesized from amino acids obtained through diet.
- Amino acids such as tyrosine (precursor to dopamine) and tryptophan (precursor to serotonin) are essential for the regulation of mood and motivation.
- Poor nutrition can impact neurotransmitter synthesis, affecting media consumption habits and addiction potential.
- Social media likes and notifications activate the brain's reward system, similar to gambling (Meshi et al., 2013)
- Effects: shortened attention spans, compulsive scrolling, and media addiction (Alter, 2017)

Chemical	Function	Amino Acid Precursor	Role in Emotion
Cortisol	Stress response	Protein metabolism influences levels	Increases fear and anxiety
Adrenaline (Epinephrine)	Fight-or-flight response	Tyrosine	Heightens alertness and energy during stress
Noradrenaline (Norepinephrine)	Increases focus, attention	Tyrosine	Linked to anxiety and stress response
Glutamate	Major excitatory neurotransmitter	Glutamine	Excitatory effect, enhances fear circuits
GABA (Gamma- Aminobutyric Acid)	Primary inhibitory neurotransmitter	Glutamate (converted to GABA)	Reduces anxiety, promotes calmness
Serotonin	Mood regulation	Tryptophan	Decreases anxiety, promotes well-being
Dopamine	Motivation and reward	Tyrosine	Can modulate fear response depending on context

Table: Neurotransmitters, Hormones, and Amino Acid Requirements

Oxytocin	Social bonding, trust	Peptide hormone	Reduces fear in social
		synthesis	settings

Slide 4: The Influence of Media on Neurotransmitters and Hormones

- Cortisol and Social Media Stress:
 - Constant exposure to negative news and online conflicts increases cortisol levels, leading to chronic stress and anxiety.
 - Doomscrolling (excessive consumption of negative media) heightens stress response, disrupting emotional regulation.

• Adrenaline and Fear-Driven Content:

- Sensationalized news, horror content, and aggressive social media interactions can trigger adrenaline release, creating a heightened state of fear and alertness.
- Clickbait headlines manipulate the brain's fear response to encourage continued engagement.

• Noradrenaline and Hyper-Focus:

- Highly engaging media, including video games and fast-paced social media feeds, can increase noradrenaline levels, keeping users in a hyper-focused but anxious state.
- Overuse can contribute to stress-related attention issues, particularly in younger audiences.

• Glutamate and Media Overstimulation:

- Excessive screen time and fast media consumption overstimulate the brain's excitatory neurotransmitter, glutamate, leading to mental fatigue and increased anxiety.
- High stimulation from multiple screens can lead to an inability to relax or process information deeply.
- GABA and the Role of Media in Anxiety Reduction:
 - Relaxing content (meditation apps, calming music, and positive social interactions) can increase GABA levels, reducing stress and promoting relaxation.
 - However, excessive exposure to stimulating content can reduce GABA's effectiveness, leading to chronic anxiety and overthinking.

• Serotonin and Social Media Gratification:

- Social media interactions, particularly receiving likes and comments, trigger serotonin release, temporarily boosting mood.
- However, frequent comparison and social rejection online can lower serotonin levels, increasing the risk of depression and anxiety.

- Dopamine and Social Media Addiction:
 - Instant gratification mechanisms in social media (likes, shares, notifications) create a dopamine-driven reward loop, similar to addictive substances.
 - Continuous dopamine stimulation reduces natural motivation for offline activities, contributing to procrastination and decreased productivity.
- Oxytocin and Online Social Connections:
 - Positive social media interactions, such as supportive communities and bonding experiences, can increase oxytocin, promoting trust and a sense of belonging.
 - However, online conflicts and cyberbullying can suppress oxytocin, leading to social anxiety and withdrawal.

Slide 2: The Brain and Media Consumption

- The brain processes media through the prefrontal cortex (decision-making), limbic system (emotion), and reward system (dopamine release) (Kühn & Gallinat, 2014)
- Media triggers dopamine release, creating pleasure and reinforcement loops (Volkow et al., 2011)
- Neurotransmitters and hormones play a critical role in this process. Dopamine, serotonin, and oxytocin are all synthesized from amino acids obtained through diet.
- Amino acids such as tyrosine (precursor to dopamine) and tryptophan (precursor to serotonin) are essential for the regulation of mood and motivation.
- Poor nutrition can impact neurotransmitter synthesis, affecting media consumption habits and addiction potential.
- Social media likes and notifications activate the brain's reward system, similar to gambling (Meshi et al., 2013)
- Effects: shortened attention spans, compulsive scrolling, and media addiction (Alter, 2017)

Table: Neurotransmitters, Hormones, and Amino Acid Requirements

Chemical	Function	Amino Acid Precursor	Role in Emotion
Cortisol	Stress response	Protein metabolism influences levels	Increases fear and anxiety
Adrenaline (Epinephrine)	Fight-or-flight response	lvrosine	Heightens alertness and energy during stress
	Increases focus, attention	lyrosine	Linked to anxiety and stress response

Glutamate	Major excitatory neurotransmitter	Glutamine	Excitatory effect, enhances fear circuits
GABA (Gamma- Aminobutyric Acid)	Primary inhibitory neurotransmitter	Glutamate (converted to GABA)	Reduces anxiety, promotes calmness
Serotonin	Mood regulation	Tryptophan	Decreases anxiety, promotes well-being
Dopamine	Motivation and reward	Tyrosine	Can modulate fear response depending on context
Oxytocin	Social bonding, trust	Peptide hormone synthesis	Reduces fear in social settings

Slide 4: The Influence of Media on Neurotransmitters and Hormones

• Cortisol and Social Media Stress:

- Constant exposure to negative news and online conflicts increases cortisol levels, leading to chronic stress and anxiety.
- Doomscrolling (excessive consumption of negative media) heightens stress response, disrupting emotional regulation.
- Adrenaline and Fear-Driven Content:
 - Sensationalized news, horror content, and aggressive social media interactions can trigger adrenaline release, creating a heightened state of fear and alertness.
 - Clickbait headlines manipulate the brain's fear response to encourage continued engagement.

• Noradrenaline and Hyper-Focus:

- Highly engaging media, including video games and fast-paced social media feeds, can increase noradrenaline levels, keeping users in a hyper-focused but anxious state.
- Overuse can contribute to stress-related attention issues, particularly in younger audiences.
- Glutamate and Media Overstimulation:
 - Excessive screen time and fast media consumption overstimulate the brain's excitatory neurotransmitter, glutamate, leading to mental fatigue and increased anxiety.
 - High stimulation from multiple screens can lead to an inability to relax or process information deeply.
- GABA and the Role of Media in Anxiety Reduction:

- Relaxing content (meditation apps, calming music, and positive social interactions) can increase GABA levels, reducing stress and promoting relaxation.
- However, excessive exposure to stimulating content can reduce GABA's effectiveness, leading to chronic anxiety and overthinking.

• Serotonin and Social Media Gratification:

- Social media interactions, particularly receiving likes and comments, trigger serotonin release, temporarily boosting mood.
- However, frequent comparison and social rejection online can lower serotonin levels, increasing the risk of depression and anxiety.

• Dopamine and Social Media Addiction:

- Instant gratification mechanisms in social media (likes, shares, notifications) create a dopamine-driven reward loop, similar to addictive substances.
- Continuous dopamine stimulation reduces natural motivation for offline activities, contributing to procrastination and decreased productivity.

• Oxytocin and Online Social Connections:

- Positive social media interactions, such as supportive communities and bonding experiences, can increase oxytocin, promoting trust and a sense of belonging.
- However, online conflicts and cyberbullying can suppress oxytocin, leading to social anxiety and withdrawal.