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L
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol
Rev 100: 573–602, 2020. First published October 31, 2019; doi:10.1152/
physrev.00016.2019.—Parietal cells are responsible for gastric acid secretion, which
aids in the digestion of food, absorption of minerals, and control of harmful bacteria.
However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion

is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal
mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including
the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists
and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The
H�-K�-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H� for
extracellular K�. The H� secreted into the gastric lumen by the H�-K�-ATPase combines with luminal
Cl� to form gastric acid, HCl. Inhibition of the H�-K�-ATPase is the most efficacious method of
preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid
blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H�-K�-
ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the
overlying secretory canaliculus, a process that represents the most prominent example of apical
membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an
important role in gastric mucosal homeostasis through the secretion of multiple growth factor mole-
cules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well
as coordination of physiological repair.
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I. HISTORICAL PERSPECTIVE ON ACID
SECRETORY PHYSIOLOGY AND
PATHOPHYSIOLOGY

The pursuit of an understanding of gastric acidity has been
a central focus of gastrointestinal medicine and physiology

through the ages. Acid-peptic disease has been a consistent
cause of morbidity and mortality throughout human his-
tory. Early physicians such as Galen and Vesalius recog-
nized the caustic nature of gastric secretions in many ani-
mals including humans (402). Nevertheless, it was not until
the 18th century that physiologists systematically sought to
determine the chemical nature of gastric secretion. The in-
sights into the composition of gastric juice began with
the studies involving dubious ethics by William Beaumont
who studied the effluent from a gastric-cutaneous fistula in
a soldier wounded in the French and Indian War (31). These
studies allowed Beaumont to determine a number of meal-
related stimuli to the flow of gastric juice. While many be-
lieved that lactic acid accounted for the acidity in the stom-
ach, in 1823, Prout determined definitively that the highly
caustic nature of the gastric juice was due to HCl (258).
This recognition of HCl secretion led to investigation of
how neurons and humoral regulators control the secretion
of acid from parietal cells. Similarly, the drive to understand
acid secretion as a cause of ulcer disease led to extensive
physiological studies beginning in the late 19th century fo-
cusing on identifying ways to moderate acid secretion and
ameliorate acid-peptic disease. Latrajet (220) was the first
to detail the innervation of the stomach, and Pavlov (289)
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expanded these insights to define neuronal regulation of
acid secretion. The studies of Latrajet and Pavlov led to the
development of acid suppressive surgery by Dragstedt, first
through vagotomy and later through vagotomy and antrec-
tomy (80). These operations, based on concepts of regula-
tion of physiology, dominated the treatment of duodenal
ulcer disease through most of the 20th century until the
introduction of H2-histamine receptor blockers in the
1970s and the recognition in the 1980s of Helicobacter
pylori infection as the predominant cause of duodenal ul-
cers.

II. THE CELLULAR ANATOMY OF THE
STOMACH

The human stomach is separated into three anatomical re-
gions: the cardia, the corpus, and the antrum. The corpus
represents the largest portion of the stomach and is popu-
lated by oxyntic glands. The oxyntic glands contain large
numbers of acid-secreting parietal cells and an isthmal pro-
genitor zone near the top quarter of the glands. Foveolar
surface Muc5AC-expressing mucous cells migrate towards
the lumen from the isthmus, while parietal cells migrate
towards the base (188, 189). The oxyntic glands also show
Muc6-expressing mucous neck cells that migrate towards
the base and subsequently redifferentiate into pepsinogen-
secreting chief cells (190). The position of the progenitor
zone near the lumen is the result of differing lifetimes of
corpus gland lineages. Thus surface mucous cells, which
migrate towards the lumen, live 5–7 days (189). In contrast,
the parietal and chief cell lineages that migrate towards the
base live 90–120 days (187, 190, 417). The oxyntic glands
are also defined specifically by the presence of ghrelin-se-
creting enteroendocrine cells and harbor histamine-secret-
ing enterochromaffin-like (ECL) cells, somatostatin-secret-
ing D cells, and a few serotonin-secreting enterochromaffin
(EC) cells (77, 239) (FIGURE 1).

In contrast, the antral or pyloric glands contain foveolar
surface mucous cells and Muc6-expressing deep mucous
cells. The presence of gastrin-expressing G cells defines the
antrum, and these glands also show D cells and some EC
cells (77). It is important to note that while the discrete
separation of corpus oxyntic glands from mucus-secreting
antral glands is very sharply demarcated in rodent and rab-
bit stomach, the human antrum usually contains a mixture
of oxyntic- and antral-type glands. The oxyntic-type glands
in the antrum do contain parietal cells and chief cells, but at
significantly reduced numbers compared with corpus
glands (77, 385). It is not clear whether the presence of
parietal cells in the human antrum has consequences on the
prevalence of duodenal ulcer disease.

The cardia region in humans as well as rabbits resides ad-
jacent to the gastroesophageal junction and has variable
size ranging from a few glands to 20–30 glands. Cardia

glands are characterized by an absence of parietal cells and
chief cells and have overall characteristics more similar to
antral glands. All mammals studied possess a unique first
gland directly after the squamo-columnar junction that has
unique characteristics including Lgr5-positive stem cells, a
general absence of endocrine cells or parietal cells, and an
abundance of sensory tuft cells (182, 277). It remains con-
troversial whether larger numbers of cardia glands in hu-
mans represents an expansion of the gland populations
from the first gland. It should be noted that rodents do not
have a real cardia. Rather rodents possess a large squamous
epithelia-lined forestomach. Nevertheless, they still show a
characteristic first gland at the squamo-columnar junction
(277).

III. REGULATION OF GASTRIC ACID
SECRETION

A. Neurohumoral Regulation of Parietal Cell
Secretion

Hydrochloric acid secreted from gastric parietal cells gen-
erates the strongly acidic environment of the gastric lumen
(pH �2) (305), which kills food-derived bacteria, facilitates
food digestion, and promotes absorption of minerals in-
cluding phosphate, calcium, and iron. High levels of acid
secretion also represent a potentially harmful substance to
the integrity of the gastric mucosa. Thus the gastric mucosa
must maintain a balance between acid secretion and mech-
anisms for mucosal protection. The extrinsic and intrinsic
neuroendocrine system of the stomach balances the influ-
ences of agonist and antagonist to maintain a safe range of
acid secretion. Below we highlight the present knowledge of
how the physiological balance between stimulatory and in-
hibitory pathways is integrated within the gastric mucosa
(FIGURES 2 AND 3).

B. Stimulatory Mediators

1. Vagus nerve/acetylcholine

Extrinsic nerves densely innervate the upper gastrointesti-
nal mucosa and regulate gastric acid secretion through af-
ferent and efferent signals (FIGURE 2). The importance of
the vagus nerve in stimulating acid secretion was first elab-
orated by Pavlov (289). Since vagotomy decreases basal and
distension-induced acid secretion (136), this surgery was a
mainstay of peptic ulcer treatment for decades (80). Affer-
ent nerves processes from neural bodies in nodose ganglia
consist of ~80% of vagus nerve fibers, implicating the im-
portance of sensory function in the gastrointestinal mucosa.
Sensory function for vagal components may be critical for
luminal sensing and coordination of acid secretion and
other functions including cell lineage homeostasis. Powley
et al. (302) demonstrated the afferent terminals running
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close to epithelial cells of antral glands and duodenal villi
and glands. However, they did not directly contact the lu-
men, suggesting that afferent nerves indirectly monitor lu-
minal signals. Afferent nerve terminals and varicosities con-
tain the neuropeptide calcitonin gene-related peptide
(CGRP), released by local activation to stimulate ghrelin
and somatostatin secretion from gastric X and antral D
cells, respectively (98, 241, 446). Mechanical and chemical
stimuli in the stomach activate a subset of vagal afferent
neurons expressing glucagon-like peptide 1 receptor (GLP-
1R) shown by in vivo ganglion imaging in reporter protein

transgenic mice (422). The same study demonstrated that
intraduodenal chemicals activated another subset of nodose
neurons, which express GPR65, a proton sensing receptor
(346, 422). Neuronal tracer studies in rats precisely mapped
the afferent innervation and showed that right and left no-
dose afferents line antral mucosa, while left nodose pre-
dominantly innervates the duodenum (411). Unilateral va-
gotomy may alter the gastrointestinal response to intraduo-
denal foods. Afferent signals through nodose neurons are
transduced to the nucleus tractus solitarius (NTS) in the
medulla, which is influenced by postprandial circulating
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FIGURE 1. Cellular anatomy of the stomach. The human stomach is composed of three distinct regions: the
cardia, the corpus, and the antrum. The gastric cardia resides in the most proximal portion of the human
stomach. The corpus contains the oxyntic glands that harbor an isthmal progenitor region and contains the
majority of acid-secreting parietal cells and pepsinogen-secreting chief cells. Corpus glands uniquely contain
ghrelin-secreting X cells. The antral glands are predominantly mucus secreting glands and uniquely harbor the
gastrin expressing G cells. It is important to note that, in the human stomach, the antrum contains a mix of
oxyntic and antral glands; however, the oxyntic-type glands in the antrum have significantly fewer chief cells and
parietal cells compared with corpus glands (77).
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hormones and nutrients by the blood-brain barrier, which is
relatively leaky to these molecules. NTS neurons contact
dorsal motor nucleus (DMN), where the efferent nerves of
the vagus originate. Electrical activation of DMN increases
gastric acid secretion in cats (429). Vagal efferent nerves
connect to gastric myenteric ganglia in the enteric nervous
system (ENS), and the final vagal neurotransmitter is ace-
tylcholine (ACh). Gastric mucosal nerves originating from
intrinsic (submucosal and myenteric) ganglia predomi-
nantly contain ACh (15). Gene deletion of the neurturin
receptor GFR�2 in mice causes a loss of mucosal cholin-
ergic nerves, although basal and histamine-stimulated acid
secretion as well as plasma gastrin level is similar to levels
detected in wild-type mice (211). Unstimulated gastric acid
output in GFR�2 knockout (KO) mice is reduced by the
muscarinic antagonist atropine to the same extent as in
wild-type mice (211), suggesting that a non-neural ACh
source in gastric mucosa may exist to maintain the basal
constitutive activity of muscarinic receptors.

Electrical stimulation of the cervical vagus nerve increases
gastric acid secretion (41, 361). Vagal activation-induced
acid secretion is reduced by atropine by 70% and abolished

by the combination of atropine with ganglionic ACh recep-
tor antagonist hexamethonium in anesthetized rats (347),
suggesting the predominant contribution of the muscarinic
pathway. The ACh analogue carbachol increases intracel-
lular Ca2� ([Ca2�]i) in isolated parietal cells, some ECL
cells, and G cells to activate secretion (268, 439, 449). Dis-
tinct G protein-coupled muscarinic ACh receptors (M1R-
M5R) differentially regulate gastric acid secretion. Selective
antagonists for M3R increases inositol phosphate and
[Ca2�]i in isolated parietal cells from rats and rabbits (296,
421). The deletion of each muscarinic receptor subtype in
transgenic mice demonstrated that M3R mediates the great-
est influence on stimulating acid secretion, with an addi-
tional contribution of M5R, but not M1R (8, 9). In addition,
M4R activation suppresses somatostatin release from D
cells, further enhancing gastric acid secretion (377).

2. Gastrin/G cell/CCK2 receptor

A gastric acid-stimulating hormone, gastrin, produced in
the antrum was proposed in 1906 (92). Classic physiologi-
cal experiments using isolated antrum with Heidenhain
pouch in dogs demonstrated the presence of this humoral
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FIGURE 2. Neurohumoral regulation of gastric acid secretion. Multiple pathways are involved in the regula-
tion of gastric acid secretion, including the neuronal and endocrine pathways mediated by the enteric nervous
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distributed throughout the stomach. Gastrin-producing G cells are specifically localized in the antrum. Small
intestinal enteroendocrine cells have some overlapping expression of gastric peptides including ghrelin and
somatostatin (93, 185).
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factor (139, 426, 427). Gregory and Tracy (135) extracted
gastrinlike peptides from pig antral mucosa and determined
its amino acid sequence. Subsequently, human gastrin was
isolated as a heptadecapeptide with only one amino acid
difference from pig gastrin (37). The gastrin gene was
cloned from pig antrum in 1982 (440) and human in 1983
(50, 192). The gastrin-producing enteroendocrine cell (G
cell), which has an apical brush border with direct access to
the lumen, was first identified by Solcia et al. (364) in guinea
pig antrum. Yalow and Berson (434) developed a radioim-
munoassay with highly specific human gastrin antisera and
showed that intragastric HCl decreased plasma gastrin level
within a few minutes in pernicious anemia (autoimmune
gastritis) patients, who have hypergastrinemia. The G cell
was the first physiologically and histologically identified
enteroendocrine cell and inspired further characterization
of other enteroendocrine cell populations as gut nutrient
sensor cells (112). Bioactive amidated gastrin has two major
forms, G34 (big gastrin) and G17 (little gastrin), which
share COOH-terminal polypeptides and are released into
circulation after a meal (215). Most stored gastrin in human
antrum is G17 (181, 310). G34 has a longer half-life and
causes long-lasting acid stimulation (410), suggesting that
the processing mechanism can regulate gastrin efficacy. Sev-
eral Gq-coupled receptors for digested protein (peptone and

amino acids) are found in G cells, such as CaSR, GPCR6A,
and LPAR5 (102, 144, 309, 311). These chemical sensors
are likely a mechanism of amino acid-induced gastrin secre-
tion, subsequently stimulating acid secretion from parietal
cells (100). A recent study, using CaSR agonists and the
synthetic antagonist NPS2143, showed that CaSR activa-
tion stimulates gastrin release from dissected pig antral
glands and that aromatic amino acids together with extra-
cellular Ca2� trigger this pathway (430).

The gastrin receptor, also designated as CCK2R by the In-
ternational Union of Basic and Clinical Pharmacology
(IUPHAR)/British Pharmacological Society (BPS) “Guide
to Pharmacology” (gene name: CCKBR; IC50 � 1 nM),
was cloned in several animals including humans as an iden-
tical receptor in the stomach and brain (205, 298, 415). In
human stomach, CCK2R immunoreactivity is localized on
the basolateral membrane in the majority of parietal cells
and some chromogranin-A containing ECL cells (210, 341).
Histamine H2-receptor antagonists inhibit CCK2R-acti-
vated acid secretion in vivo (1, 46) and in parietal cells (71,
122), suggesting that gastrin indirectly stimulates acid se-
cretion through histamine release from ECL cells. Although
CCK2R is present on parietal cells, direct effect of gastrin on
acid secretion in humans is likely minor. Synthetic G17
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enhance the acid secretory pathway. Somatostatin directly inhibits gastric acid secretion from parietal cells as
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feedback system. Apelin, produced by parietal cells, exerts inhibitory or stimulatory effects on ECL cells.
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infusion increases acid secretion in fasted men, and this
response is reduced �70% by atropine and abolished by
famotidine (451). The primary pathway of gastrin-induced
acid secretion in humans is likely paracrine release from
ECL cells of histamine, which directly activates parietal
cells. Additionally, gastrin-CCK2R signaling potentiates
cholinergic input on parietal cells (117). CCK2R is also
essential for parietal cell differentiation and maturation.
Germline CCK2R-deficient mice demonstrate gastric muco-
sal atrophy and decreased parietal cell and ECL cell num-
bers, resulting in increased basal gastric pH and plasma
gastrin level (216, 264). Likewise, gastrin-deficient mice
have few parietal cells and low basal and stimulated acid
secretion in vivo (110). However, isolated parietal cells
from gastrin KO mice show higher Ca2� responses than
wild-type cells (163), suggesting that gastrin influences pa-
rietal cell characteristics and balances the receptor ex-
pression levels. Furthermore, gastrin is required for tonic
expression of the gastric trefoil factors and parietal cell
maturation (199, 285). The gastrin-secreting G cells reg-
ulate parietal cell function as a feedback system from the
distal part of the stomach.

The CCK1 receptor (CCK1R; gene name: CCKAR) has
1,000-fold higher affinity to cholecystokinin (CCK)-8 than
gastrin, while CCK2R has similar affinity to both peptides.
CCK is produced and secreted by a subpopulation of the
enteroendocrine cells of the duodenum in response to lumi-
nal fatty acids and digested protein (154, 227). CCK1R
activation inhibits acid secretion in anesthetized rats and
healthy humans (230, 338). CCK1R immunoreactivity is
found in both chief cells and D cells, which are CCK2R
negative (341, 343), suggesting that CCK contributes to
postprandial acid inhibition likely through somatostatin re-
lease.

3. Histamine

Histamine is a bioactive amine and strong acid secreta-
gogue, generated by histidine decarboxylase (HDC) in the
ECL cells and mast cells in the corpus gastric glands (145).
ECL cells, which are frequently found next to parietal cells,
have no direct contact with the gastric lumen (closed type
enteroendocrine cells). These ECL cells show long basal
processes that are thought to come in apposition with multi-
ple parietal cells (66, 99). Histamine release is directly acti-
vated by circulating gastrin via CCK2R (162) and neuronal
pituitary adenylate cyclase-activating peptide (PACAP) via the
PAC1R (447) (FIGURE 4). Histamine release is suppressed by
somatostatin via SST2 and galanin via Gal1 (448) receptors on
ECL cells. Diamine oxidase (DAO) and histamine-N-methyl-
transferase deactivate histamine. The infusion of exogenous
DAO made from pig kidney inhibited histamine-induced gas-
tric acid secretion in dogs (138). In a human study, heparin-
induced gastric acid inhibition was mediated by endogenous
DAO (151).

The H2 histamine receptor (H2R) was defined pharmaco-
logically as a mediator of gastric acid secretion through the
use of its antagonist, burimamide, in anesthetized rats (46).
Acid secretion is insensitive to H1R antagonists, such as
mepyramine. H2R antagonists inhibit cholinergic- and gas-
trin-induced acid secretion in vivo and in isolated gastric
glands (40, 137). Synthetic H2R antagonists were the first
targeted therapeutics for peptic ulcers and erosive esophagi-
tis (46, 260) before the development of proton pump inhib-
itors. Parietal cells express Gs-coupled H2 receptors, which
increase intracellular cAMP to stimulate acid secretion di-
rectly and potentiate Ca2�-induced acid secretion (40). His-
tamine induces accumulation of cAMP (238) and activates
cAMP-dependent protein kinase in isolated parietal cells
(69). H2R-activated cAMP production is the crucial and
rate-limiting trigger of parietal acid secretion. HDC-defi-
cient mice barely respond to carbachol and/or gastrin, but
gastric acid secretion is stimulated by the combination of
forskolin and carbachol (115). Similarly, H2R-deficient
mice lack the response to gastrin, but basal acid secretion is
maintained by M3R and CCK2R signaling (114). Trans-
genic mice with H�-K�-ATPase promotor-derived cholera
toxin show consistently high intracellular cAMP concentra-
tion in parietal cells. These mice have high basal acid secre-
tion and low plasma gastrin, and subsequently develop
metaplasia with parietal cell loss by 15 mo of age (231).

Four subtypes of G protein-coupled histamine receptors
(H1-H4R) have been cloned and identified in different types
of cells in the gastrointestinal tract (326). Inhibitory H3

receptors on ECL cells likely mediate a direct autocrine
feedback mechanism in rats and rabbits (166, 304); how-
ever, the functional expression of H3R in humans is still
controversial.

4. Ghrelin

Ghrelin, which is an octanoylated 28-amino acid peptide
released from the oxyntic mucosa of stomach, was identi-
fied by Kojima et al. (202) as a growth hormone secreta-
gogue receptor (GHSR) ligand. Circulating ghrelin levels
have a circadian rhythm and are increased by fasting and
decreased by feeding in rodents (388) and humans (82).
Ghrelin-producing X cells are closed-type enteroendocrine
cells (83), which have no direct contact with the lumen and
are distributed in corpus oxyntic glands reciprocally with
gastrin in the antrum (77). A variety of metabolite and
neurohumoral receptors are expressed on X cells. Bitter
taste receptor (T2R)-coupling G proteins, such as gustducin
and transducin, are colocalized with ghrelin in murine
stomach. Bitter compound ingestion increases plasma ghre-
lin level within 40 min (177). FACS and qPCR techniques
revealed that X cell release of ghrelin is inhibited by the
activation of FFA2 (short-chain fatty acids), FFA4 (long-
chain fatty acids), HCA1 (lactate), CaSR (extra cellular cal-
cium, amino acids), and SST1–3 (somatostatin) receptors,
explaining the decreased plasma ghrelin levels after a meal.
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Release of ghrelin from X cells is activated by �1-adrener-
gic, CGRP, gastric inhibitory polypeptide (GIP), and secre-
tin (SCT) receptors, consistent with in vivo observations
that postprandial nutrients and hormones regulate ghrelin
release (98). Peripheral (248) and intracerebroventricular
(84) administration of ghrelin stimulates gastric acid secre-
tion through the vagus nerve in rats. Furthermore, in rats,
coadministration of ghrelin with gastrin synergistically in-
creases acid secretion stimulated through the vagus nerve
(113, 433). Although most of human ghrelin cells are lo-
cated close to parietal cells (99), model animal studies so far
show that ghrelin action on acid secretion is predominantly
mediated by GHSR on afferent nerves and a vagal reflex
(FIGURE 3).

5. Apelin

Apelin was isolated from bovine stomach as an endogenous
ligand of an orphan human G protein-coupled receptor

(GPCR), angiotensin-like peptide receptor (APJ), with
higher affinity for short COOH-terminal fragments (ape-
lin-13 or -17) than long fragments (apelin-35) (381). Rat
parietal cells express apelin mRNA, while ECL cells express
APJ mRNA in purified rat gastric epithelial cells (214), sug-
gesting a feedback pathway from the parietal cell to the
ECL cell. In isolated rabbit gastric glands, 100 nM apelin
inhibited [Ca2�]i responses in ECL cells and gastrin-in-
duced parietal cell activation (214). In contrast, in vivo
gastric perfusion experiments in rats showed that 100 �g/kg
intravenous apelin-12 enhanced acid secretion through his-
tamine release, independent from muscarinic cholinergic
pathways (280). Different lengths of apelin fragments inter-
act differently with APJ and its downstream Gi/o, inhibiting
cAMP production in CHO cell expression systems (142),
suggesting that different effects of endogenous apelin are
influenced by truncation. Apelin immunoreactivities are
broadly found in central and peripheral tissues, including in
human mesenteric adipocytes with Crohn’s disease (118)
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FIGURE 4. Membrane receptors on parietal and enterochromaffin-like (ECL) cells and intracellular signaling
pathways that regulate gastric acid secretion. Stimulatory pathways are indicated in green, and inhibitory
pathways are indicated with red lines. The parietal cell expresses G protein-coupled receptors (GPCRs) for acid
secretagogues, including the muscarinic receptor (M3) for acetylcholine, the gastrin receptor (CCK2), and the
histamine receptor (H2). M3 and CCK2 receptors are coupled to G protein Gq that activates phospholipase C
(PLC), which leads to intracellular Ca2� release to potentiate acid secretion. Binding of histamine to the H2
receptor activates adenylate cyclase (AC) to generate cAMP through Gs signal, which potently stimulates
H�-K�-ATPase (H/K) activity via cAMP-dependent protein kinase (PKA). Histamine release from ECL cells is
stimulated by a variety of receptors, including CCK2, PAC1, EP4, and the motilin receptors. Several receptors
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EGFR, and SST2 receptors. The inhibitory G protein (Gi) suppresses AC activities to inhibit cAMP-mediated
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and Kupffer cells in rat liver in addition to gastric parietal
cells (382). In a stress-induced gastric lesion model in rats,
apelin protein expression was increased, and APJ receptor
antagonist delayed the mucosal healing, indicating an im-
portant role of apelin-APJ signaling in mucosal protection
(43). Those observations suggest that apelin can locally and
systemically modulate gastric acid secretion through APJ-
histamine-H2R signaling under physiological and patholog-
ical conditions. Further examination of apelin functions in
human stomach is needed.

6. Motilin

Motilin, which is in the same peptide family as ghrelin, was
identified in pig intestine as a gastric motility activating
peptide (52). Duodenal Mo cells release motilin during the
interdigestive period by unknown stimuli. High doses (10
�g/kg) of motilin or a coadministration of a low dose (1
�g/kg) of motilin and ghrelin synergistically stimulate gas-
tric acid secretion in anesthetized shrews (131). This pep-
tide-induced acid secretion is mediated by histamine release
and is independent from cholinergic pathways. Both moti-
lin and ghrelin are released when the stomach is empty,
suggesting that this combination is responsible for endo-
crine regulation of interdigestive motility-related gastric
acid secretion.

7. Glucocorticoids

Glucocorticoids are essential steroid hormones for systemic
homeostasis, primarily secreted by the adrenal cortex in a
circadian manner and in response to stress. Other organs,
including the intestine, also synthesize glucocorticoids, and
local functions in immune regulation have been proposed
(79). Glucocorticoids stimulate gastric acid secretion in
dogs (81) and mice through serum- and glucocorticoid-in-
ducible kinase (SGK1), which stimulates K� channels, such
as KCNQ1 (327). Adrenalectomy induces oxyntic atrophy
and gastric inflammation through the spontaneous activa-
tion of CXCR2� monocytes in mice, suggesting that gluco-
corticoids are essential for gastric homeostasis (56). In hu-
man studies, glucocorticoids induce hypergastrinemia
(308), but do not affect acid secretion (164). Glucocortico-
ids bind ligand-dependent transcription factors, namely,
mineralocorticoid (MR or NR3C2) and glucocorticoid (GR
or NR3C1) receptors, that are broadly expressed in gastric
cells, including parietal cells (56, 278). The activity of glu-
cocorticoids is regulated by the balance of two subtypes of
hydroxysteroid dehydrogenases (11�-HSD1 and 11�-
HSD2), which either catalyze production of active gluco-
corticoids or inactivate them, respectively (63). Because hu-
man parietal cells highly express mineralocorticoid receptor
and 11�-HSD2, mineralocorticoid-specific effects on pari-
etal cells are suggested, rather than glucocorticoid (193).
Yet the function of MR in regulating parietal cell mediated
acid secretion remains unknown.

C. Inhibitory Mediators

1. Somatostatin

Somatostatin was identified as a growth-hormone release-
inhibiting hormone in the hypothalamus and is found in
enteroendocrine D cells in human gastric mucosa (219,
299). In anesthetized dogs, intragastric glucose, fat, and
casein hydrolysate stimulates somatostatin release from the
corpus to a greater degree than from the antrum (345).
Conversely, intraduodenal and intragastric HCl infusion
potently stimulates antral somatostatin secretion, but not
from the corpus (345), suggesting that D cells throughout
the gastric mucosa possess several nutrient receptors ex-
pressed at different levels and antral D cells are more sensi-
tive to luminal acid. As oligopeptide and amino acid recep-
tors in the human and pig antrum, immunoreactivities of
CaSR, LPA5, and GPRC6A are detected in D cells (144),
indicating that antral D cells are stimulated by luminal or
circulating nutrients. From the circulation, gastrin and
CCK regulate somatostatin secretion in the corpus and an-
tral mucosa to different extents (443). More GPCRs were
identified in isolated D cells from reporter mouse gastric
tissue and primary cultured gastric epithelial cells using
transcriptome techniques (6, 94). Trace amine-associated
receptor 1, GLP-1R, GIPR, CGRP receptor subunits, vaso-
active intestinal peptide R, adrenomodulin R, melanocortin
MC1, muscarinic M3, CCK2, and adrenergic receptors are
all stimulators of somatostatin release, whereas long-chain
fatty acid receptor FFA4, SST1, and SST2 receptors are sup-
pressers of somatostatin secretion (6, 94).

Intravenous somatostatin potently reduces feeding- or gas-
trin-stimulated acid secretion in conscious cats, dogs, and
humans (27, 128, 204, 297). The direct effect of somatosta-
tin on isolated gastric glands and parietal cells from rabbit
stomach suggests that histamine secretion from ECL cells
and acid production in parietal cells are both inhibited by
somatostatin (68).

All of the five subtypes of somatostatin receptors (SST1-
SST5R) are coupled with inhibitory G protein (Gi/o) and
uniquely distributed in the gastric mucosa (11, 209). A
splice variant of SST2R, SST2aR, is predominantly ex-
pressed in rat ECL cells and human G cells, while another
variant, SST2bR, was identified in rat parietal cells (140,
336, 370). SST2R-deficient mice demonstrated higher basal
acid secretion (247), confirming that SST2R activation sup-
presses cAMP generation and decreases gastric acid secre-
tion.

2. GLP-1 and PYY/“enterogastrone” effect

A substance from intestinal mucosa, which is released in
response to intraluminal fat and inhibition of gastric acid
secretion, was first described in 1930 as “enterogastrone”
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(206). Deficiency of apolipoprotein A-IV in transgenic mice
abolishes the inhibitory effect of duodenal lipid on meal-
stimulated gastric acid secretion (419), suggesting that ab-
sorption is essential for gastric acid inhibition by dietary
lipid. Currently, an intestine-specific proglucagon product,
glucagon-like peptide 1 (GLP-1), and peptide tyrosine-ty-
rosine (PYY), another inhibitory gut peptide causing the
“ileal brake,” a negative feedback mechanism that slows
food transit through the gastrointestinal tract, are consid-
ered as the molecular components accounting for entero-
gastrone. Intravenous GLP-1 or PYY inhibits stimulated
gastric acid secretion in humans (141, 337). Plasma levels of
GLP-1 and PYY are increased by nutrient perfusion, includ-
ing lipid and carbohydrate in human ileum, correlating with
the inhibition of gastric acid secretion (221, 418). PYY
inhibition of histamine release from isolated rat ECL cells is
mediated by the Gi/o-coupled Y1 receptor (450). PYY ex-
pression is detected in isolated D cells from murine stomach
and only a small number of human stomach enteroendo-
crine cells (6, 94, 99), implicating direct PYY effects on
gastric cells in a paracrine fashion. On the other hand, the
GLP-1 receptor is expressed in rat parietal cells, and its
agonists stimulate cAMP and acid production (339, 340).
Since human parietal cells express GLP-1 receptors (51),
elucidating the direct function of GLP-1 on human gastric
glands would be important for understanding the side ef-
fects of incretin hormone analogues used in diabetic treat-
ments.

3. Gaseous mediators: nitric oxide and hydrogen
sulfide

Nitric oxide (NO) and hydrogen sulfide (H2S) are known to
inhibit gastric acid secretion and enhance mucosal restitu-
tion. NO is produced from L-arginine by NO synthase
(NOS) in the intramural neurons and gastric epithelial cells
(53). Immunoreactivity for endothelial NOS was identified
in surface epithelial cells and enteroendocrine cells in hu-
man gastric mucosa (38), and neuronal NOS was found in
isolated rat parietal cells (303). NO activates soluble guan-
ylate cyclase (sGC) to increase intracellular cGMP (FIGURE
4). The exogenous NO donor nitroprusside reduces hista-
mine-induced acid secretion, and the NOS inhibitor NG-
nitro-L-arginine methyl ester (L-NAME) prevents the inhi-
bition of acid secretion induced by mucosal injury in anes-
thetized rats (378). Acid production in isolated oxyntic
glands from rabbits and healthy human biopsies is inhibited
by NO via elevations in cGMP, indicating that NO acts as a
paracrine regulator (39, 200).

H2S is generated from L-cysteine by cystathionine �-syn-
thase and cystathionine �-lyase, which are expressed in the
gastric mucosa as well as in parietal cells (245). The exog-
enous H2S donor NaHS increases luminal NO release in
anesthetized rats and inhibits gastric acid secretion in re-
sponse to gastric distension (242). Generation of H2S in
gastric mucosa is increased in ulcerated mucosa and en-

hances mucosal healing independent from NO synthesis,
suggesting that H2S maintains the gastric mucosa through
several targets (407).

4. Neurotensin/xenin

Neurotensin and its related peptide, xenin, are neuropep-
tides that are produced in the central nervous system as well
as from enteroendocrine cells in the distal and proximal
intestine, respectively. Plasma concentrations of these pep-
tides are elevated after a meal and influence gastrointestinal
functions via high-affinity NTS1, low-affinity NTS2, and
NTS3 receptors. Intravenous neurotensin or xenin (50
ng·kg�1·min�1) potently inhibits gastric acid secretion
stimulated by pentagastrin, but not by histamine in dogs
(13, 103). Vagotomy abolishes the antisecretory effect of
(Gln4)-neurotensin, which has a glutamine residue at posi-
tion 4 instead of glutamic acid in the natural form (14), and
neurotensin-binding neurons were identified in rat nodose
ganglia (198), suggesting the remarkable contribution of a
vagal reflex. NTS1R, which is equally activated by neuro-
tensin and xenin, is distributed in sensory neurons (300),
and NTS2R is localized on basolateral membranes of pari-
etal cells in human gastric mucosa (342). Both neuronal
pathways and direct effects on parietal cells likely mediate
postprandial antisecretory effects of neurotensin-related
peptides.

5. Corticosterone releasing factor

Corticosterone releasing factor (CRF), a neuropeptide iden-
tified in the hypothalamus, and the related peptides urocor-
tin (Ucn)1, Ucn2, and Ucn3 (400) are involved in stress-
induced gastrointestinal dysfunctions through the G pro-
tein-coupled receptors CRF1R and CRF2R. CRF1R has high
affinity for CRF and Ucn1, but not for Ucn2 or Ucn3.
CRF2R prefers Ucn1, Ucn2, and Ucn3, but interacts poorly
with CRF (156). Intracisternally or intravenously injected
CRF inhibits gastrin-induced gastric acid secretion through
vagal pathways, indicating the localization of CRF1R
within the nervous system (374, 375). Immunoreactivity for
CRF2R, but not CRF1R, was found in parietal cells and
enteroendocrine cells in the oxyntic glands (65), and all
urocortins are present in the gastric mucosa, including in
gastric parietal cells (64, 208). These observations suggest
local gastric acid regulation by urocortins-CRF2R signal-
ing, but further studies are needed to clarify when urocort-
ins are released and whether CRF2R contributes to physio-
logical acid secretory function.

6. Prostaglandins

Prostaglandins are arachidonic acid metabolites, generated
by cyclooxygenase (COX)-1 (Gene name: PTGS1) and
COX-2 (PTGS2) in many types of cells in the normal gastric
mucosa, including parietal cells, macrophages, and myofi-
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broblasts (176). Major prostaglandins in human gastric
mucosa are PGE2 and PGI2. In experimental animals, exog-
enous PGE2 and PGI2 suppress gastric acid secretion (237,
314, 420). However, the results in humans are controversial
(32, 36), probably due to the different level of endogenous
prostaglandins in different experimental paradigms. COX in-
hibition by nonsteroidal anti-inflammatory drugs (NSAIDs)
augments acid secretion (224) and induces gastric mucosal
lesions under fasted conditions. In isolated human parietal
cells, PGE2 potently inhibits histamine-induced acid produc-
tion, as assessed by aminopyrine uptake (178). Cultured gas-
tric mucosa as well as isolated parietal cells generate PGE2

(283, 363), indicating that PGE2 functions as an autocrine
feedback regulator suppressing gastric acid secretion and pro-
moting mucosal protection. PGE2 activates four subtypes of
membrane GPCRs (EP1–4R) with an affinity order of EP3 �
EP4 � EP2 � EP1, coupling with distinct secondary messengers
(4). Histamine- or forskolin-induced cAMP accumulation is
inhibited by PGE2 (�1 �M) in isolated canine or rat parietal
cells, indicating a Gi-coupled pathway (89, 365). In vivo
gastric perfusion in anesthetized rats revealed that EP3R
agonist inhibits pentagastrin- or histamine-stimulated acid
secretion through the inhibition of parietal and ECL cells,
whereas high concentrations of PGE2 (�100 �M) or Gs-
coupled EP4R agonist enhances histamine release from ECL
cells (194). High concentrations of PGE2 also stimulate bi-
carbonate secretion via EP1R to counteract histamine-up-
regulated acid secretion (379), suggesting that gastric pH is
balanced by PGE2 production. EP3R is distributed on the
basolateral membrane of gastric epithelial cells, and EP4R
expression is weak in the epithelium but abundant in lamina
propria mononuclear cells in human stomach, as shown by
immunohistochemistry (376). Although expression of both
isoforms of COX enzymes is increased in inflamed gastric
mucosa, COX-1 predominantly mediates gastric acid inhi-
bition through EP3R as well as IPR, a PGI2 receptor in
isolated parietal cells (26, 176, 267, 272). Constitutive pro-
duction of PGE2 and PGI2 at physiological concentration
protects the gastric mucosa.

7. Adenosine

Extracellular adenosine inhibits histamine-induced acid se-
cretion in isolated parietal cells from dogs and guinea pigs,
likely through A1 receptors (123, 161). Rabbit parietal cells
express A2B receptors, which stimulate adenylate cyclase
activity and acid production (17, 18), suggesting species
difference in direct adenosine function. A1 receptors are
found in G cells as an inhibitory mechanism of acid secre-
tion (438). Somatostatin release is enhanced by high con-
centration of adenosine via A2A receptor activation, while
somatostatin release is inhibited by low concentrations of
adenosine through an A1 receptor in mouse stomach (435).
Thus the adenosine concentration in the microenvironment
is likely important for acid secretory regulation through
both direct and paracrine pathways.

8. Impact of Helicobacter pylori

Association between gastric colonization by Helicobacter
pylori and gastric ulcer disease was discovered by Marshall
and Warren (244). Research over the past three decades has
demonstrated that chronic infection with different strains
of H. pylori can lead to either hypersecretion or hyposecre-
tion and their attendant pathological sequelae (95). Hypo-
secretion and corpus-predominant gastritis are related to
the risk of gastric cancer, whereas hypersecretion and an-
trum-predominant gastritis are associated with duodenal
ulcer (95, 243). Well-studied strain-specific virulence fac-
tors include the cytotoxin-associated gene pathogenicity is-
land (cagPAI) gene, which encodes ~30 proteins of the type
IV secretory system (T4SS) forming pili of bacterial outer
membrane, and a variety of genotypes of vacuolating cyto-
toxin (vacA) gene (269, 276). Hypochlorhydria and muco-
sal inflammation are consistently observed with H. pylori
colonization for a few days to few weeks after acute infec-
tion. H. pylori inhibits acid secretion by repressing H�-K�-
ATPase �-subunit transcription and by augmented soma-
tostatin release, enhancing microbial adhesion (130, 186,
261). Once attached to the epithelial cells, H. pylori can
induce damage through secretion of the pore-forming pro-
tein VacA, resulting in apoptosis, disrupted tight junctions,
and gastric inflammation. Infection of T4SS-expressing H.
pylori strains increases the transcription factor nuclear fac-
tor (NF)-�B, binding the promoter region of the gastric
H�-K�-ATPase to repress its transcription (149). A se-
creted oncoprotein CagA is the 3=-terminal product of cag-
PAI and is transferred into host cells to induce epithelial
hyperproliferation and parietal cell apoptosis, resulting in a
high risk of gastric cancer (270, 290, 324). Histamine- or
carbachol-induced acid production in human parietal cell
culture is acutely inhibited by incubation with a sonicated
suspension of H. pylori (175). In addition, accumulation of
H. pylori metabolites, such as fatty acids, suppresses pari-
etal cell activities (35). Short-term (20 min) exposure of
Ussing chambered rat gastric mucosa to H. pylori or its
culture supernatant inhibits histamine release and stimu-
lates somatostatin secretion via CGRP release from muco-
sal sensory nerves (442). Nevertheless, hyposecretion of
acid and atrophic gastritis induced by chronic H. pylori
infection may also be influenced by host characteristics in-
cluding interleukin (IL)-1� polymorphisms (96).

Despite a number of mechanisms that can lead to hypose-
cretion and eventually atrophic gastritis associated with
certain strains of H. pylori, it is likely that other strains are
responsible for �95% of duodenal ulcers. Distinct viru-
lence factors have been identified in different strains that are
isolated from patients with gastric ulcer or duodenal ulcer
(173, 282, 319). Yet the mechanisms of antrum- versus
corpus-predominant inflammation have not been fully
characterized. Children with duodenal ulcer and infected
with H. pylori demonstrated elevated acid secretion and
elevated basal and meal-stimulated serum gastrin levels
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(195). Eradication of H. pylori in duodenal ulcer patients
causes reduced acid output (155). Since there is no evidence
of acute stimulation of acid secretion by H. pylori, the hy-
persecretion in duodenal ulcer patients is likely caused by
the alteration of inhibitory factors by chronic infection
rather than direct effect on parietal cells. Indeed, the com-
bination of increased gastrin and acid hypersecretion ap-
pears related to decreases in the secretion of somatostatin in
the antrum (95, 133, 254, 261), although the precise mech-
anism for this deficit in somatostatin remains unclear.

9. Growth factors and cytokines

NSAID- or H. pylori-induced gastritis involves the produc-
tion of proinflammatory cytokines, such as IL-1�, IL-6, and
IL-8 in human gastric antrum, indicating that those cyto-
kines are upstream of COX activation (148). Intravenous or
intraperitoneal injection of IL-1� inhibits acid secretion
through the central nervous system and PGE2 production in
rat stomach (315, 328, 406). Consistent with those in vivo
observations, IL-1� stimulates PGE2 generation in isolated
rat ECL cells (228), consequently inhibiting acid secretion.
In isolated mouse gastric glands, IL-2 and interferon-�, but
not IL-1�, suppress acid secretion, suggesting that a Th1
type immune response predominantly mediates direct acid
inhibition (284). The IL-1 receptor type 1 (IL-1R1) was
identified in rat and mouse parietal cells (335), and IL-1�
suppresses sonic hedgehog expression in murine parietal
cells in an IL-1R1-dependent manner (405). On the other
hand, IL-1� as well as tumor necrosis factor (TNF)-� de-
crease basal and secretagogue-stimulated acid production
in cultured rabbit parietal cells (29). Cytokine-mediated
regulation of gastric acid secretion may vary among animal
species, and the direct antisecretory effect of IL-1R1 in hu-
man parietal cells remains to be evaluated.

Transforming growth factor-� (TGF-�) is expressed
throughout the gastrointestinal tract and is abundant in
parietal cells (30). Epidermal growth factor (EGF) is se-
creted into salivary fluid (207), although whether breaches
in the lumen can lead to access to basolateral EGF receptors
in physiological conditions remains unclear. TGF-� and
EGF share amino acid homology and a common receptor,
namely, ErbB (EGFR), which is predominantly expressed
on the basolateral membranes of parietal cells and is weakly
detected in mucous neck cells and chief cells in healthy
humans (3). EGF and TGF-� inhibit histamine-induced acid
production in isolated rabbit, pig, and rat parietal cells
(183, 203, 225, 348, 362, 412). ErbB ligands may regulate
the physiological activity of parietal cells as autocrine and
paracrine mediators. Other EGF family members, such as
amphiregulin and heparin-binding EGF-like growth factor
(HB-EGF), but not Cripto are produced by human gastric
parietal cells (3, 263). The EGF level in the gastric lumen is
lower in patients with H. pylori infection or Sjögren’s dis-
ease compared with healthy subjects, suggesting that loss of
luminal EGF signal is linked to chronic gastritis (10, 233).

In an experimental gastric injury model in rats, luminal or
serosal EGF enhances mucosal restitution as measured by
mucosal potential difference (255). In vivo gastric ulcer
studies in rats also showed the therapeutic effect of oral
EGF combined with an anti-ulcer drug, sucralfate (174).
Since low levels of luminal EGF and chronic gastritis are
correlated, luminal EGF may reach basolateral receptors
and enhance restitution when the mucosa is damaged. Col-
lectively, these findings suggest that EGFR ligands may play
a dynamic role in regulating acid secretion and mucosal
homeostasis in the gastric mucosa.

D. Luminal Sensing and the Regulation of
Acid Secretion

Luminal contents also regulate acid secretion. Dietary pro-
teins stimulate acid secretion, while dietary lipids suppress
acid secretion (313). Nevertheless, little is known concern-
ing the mechanisms that regulate luminal sensing in the
gastric mucosa. Following the identification of gustatory
signal transduction molecules, some of the taste sensor mol-
ecules were identified in gastric enteroendocrine cells (143,
401, 428) and parietal cells (67). Further characterization
of orphan GPCRs revealed the molecular basis of chemical
sensors in afferent nerves and enteroendocrine cells, which
recognize food ingredients and regulate gastric physiologi-
cal functions. Acid-sensing mechanisms have been pro-
posed in the antrum and duodenum (129). However, exact
pH sensing molecules and sensor cells are still unknown in
the oxyntic mucosa. Since extracellular calcium receptor
CaSR is activated by acidic extracellular pH (306) and is
identified in parietal cells (67, 90), this GPCR-mediated
signal is implicated as an acidity sensor in oxyntic mucosa.
Rapid and local regulatory mechanisms of parietal cell ac-
tivation by sensing microenvironmental pH might be im-
portant to maintain the basal tone of acid secretion inde-
pendently from the central nervous system or systemic hu-
moral control.

IV. CHARACTERIZATION OF THE
H�-K�-ATPase

A. Gastric H�-K�-ATPase

Secretion of gastric acid by parietal cells is achieved through
hydronium ion transport via the H�-K�-ATPase pump.
This remarkable enzyme extrudes cytoplasmic protons
against a steep concentration gradient while transporting
extracellular potassium into parietal cells, resulting in elec-
troneutral ion exchange (321). The H�-K�-ATPase is a
P2-type ATPase similar to the Na�-K�-ATPase (78, 301,
373). Gastric H�-K�-ATPase is primarily found in gastric
parietal cells and to a lesser degree is expressed in the renal
medulla (7, 423). The dynamic membrane trafficking in
gastric parietal cells regulates the activity of acid secretion
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into the lumen through H�-K�-ATPase. In resting parietal
cells, gastric H�-K�-ATPase is present in tubulovesicles
(106, 331). Upon stimulation, H�-K�-ATPase containing
membranes fuse with the apical secretory canaliculi to form
microvilli-like structures with a greatly expanded secretory
surface (106, 331). The presence of the H�-K�-ATPase in
the apical canalicular membrane enables the secretion of
hydronium, provided by the H�-K�-ATPase enzyme. De-
bate continues as to the primary K� and Cl� channels that
supply the K� necessary for the exchange of H� and Cl� in
gastric HCl. KCNQ1-KCNE2 likely provides the potas-
sium necessary for exchange by the H�-K�-ATPase (213,
316, 399), while evidence suggests that the chloride in gas-
tric HCl may be provided by the putative Cl� channel Clic6
or parchorin (257, 273, 323).

B. Initial Isolation and Cloning

In 1973, the presence of a K�-stimulated ATPase in bullfrog
gastric mucosa provided evidence for a gastric proton pump
(116). Subsequently, in 1976, gastric acid secretion was
demonstrated to result from electroneutral ATP-dependent
exchange of hydrogen for potassium (321). In this seminal
report, Sachs et al. (321) reported that H�/K� exchange
was electroneutral in isolated gastric membrane fractions
from hogs. This study established a model for acid secretion
that required functional H�-K�-ATPase in the presence of
luminal K� to exchange intracellular H�. Fractionation and
electrophoresis of hog gastric mucosal homogenates yielded
evidence for the presence of H�-K�-ATPase in gastric pari-
etal cells by antibody immunostaining (320). Of the two
membrane fractions, one was identified as transporting H�

and K� and originating from the secretory canalicular
structure of the parietal cell (320). Isolation of gastric vesi-
cles from stimulated and resting gastric mucosae resulted in
cell membrane fractions with profound differences in gas-
tric microsome size, density, and K� transport activity (424,
425). Wolosin and Forte (424, 425) postulated that during
stimulation there is a transformation from small micro-
somal vesicles to larger, denser structures that correspond
to H�-K�-ATPase-rich apical membranes. These studies
provided evidence for the theory of morphological transfor-
mation of gastric oxyntic cells during stimulation in which
an expanded apical membrane is generated by fusion of
tubulovesicular membranes (107, 403, 424, 425). Further-
more, they extended our understanding of the localization
of the gastric H�-K�-ATPase providing important informa-
tion for future studies targeted at inhibiting gastric acid
secretion.

In 1986, Shull and Lingrel (359) were the first to deduce the
primary amino acid sequence of the �-subunits of the gas-
tric H�-K�-ATPase from the cDNA sequence of rat proton
pump. This was soon followed by characterization of the
sequence of H�-K�-ATPase �-subunits in hog (235), rabbit
(23), dog (366), and human (236). The �-subunits of the

H�-K�-ATPase contain the catalytic sites and are com-
prised of 1,033–1,034 amino acid sequences with signifi-
cant homology between species (98%) (24, 235, 236, 359,
366). The H�-K�-ATPase �-subunit H�-K�-ATPase is also
comprised of 8–10 transmembrane spanning segments (23,
25, 253, 262). Originally, only the �-subunit was identified;
however, studies demonstrated the presence of a �-subunit
in the Na�-K�-ATPase, indicating a high likelihood that
the H�-K�-ATPase similarly had another subunit (235,
246, 358, 359). In 1990, several laboratories confirmed the
presence of the �-subunit of the H�-K�-ATPase (61, 281,
312, 357, 384). The �-subunit contains 291 amino acids
with 6 or 7 N-linked glycosylation sites (312, 355, 357,
384). The �- and �-subunits of the gastric H�-K�-ATPase
are assembled in the endoplasmic reticulum (ER). Experi-
mental results in Xenopus oocytes demonstrated that the
proton pump is only properly trafficked and functionally
active when the �-subunit is assembled with the �-subunit
(19, 33, 34, 121). Expression of the �-subunit of the gastric
H�-K�-ATPase alone leads to retention in the ER and deg-
radation (34, 201). The �-subunit of the H�-K�-ATPase
stabilizes the H�-K�-ATPase and is required for proper
targeting of the enzyme from the ER to the Golgi and
the apical membrane, as well as proper maturation of the
�-subunit for proton pump function (5, 120, 168, 179). The
assembled enzyme, consisting of an �/�-heterodimer, is
sorted from the trans-Golgi network and trafficked to the
plasma membrane as a heterodimeric oligomer (2, 147,
353, 354, 392, 396, 397). In both nonpolarized and polar-
ized cells, sole expression of the �-subunit does not affect its
ability to mature and traffic to the plasma membrane (132,
318, 393).

C. Functional Analysis

Parietal cells secrete acid through activation of the H�-K�-
ATPase. This requires morphological changes in the cell to
form the expanded canaliculi resulting from the fusion of
tubulovesicles containing H�-K�-ATPase with the apical
membrane and insertion of the pump into the canaliculi.
Hydrolysis of ATP results in conformational changes in the
gastric H�-K�-ATPase allowing for ion transport. Ex-
change of H� and K� results from conformational changes
during the cycle of phosphorylation and dephosphoryla-
tion, which alters the orientation of the ion binding sites.
The H�-K�-ATPase enzyme functions as an out of phase
oligomeric heterodimer; therefore, if one heterodimer is in
the E1 form, the other is necessarily in the E2 form (353)
(FIGURE 5). The E1 conformation binds hydronium from the
cytoplasmic side at high affinity (ion site in), while the E2

form (ion site out) has low H� affinity and high affinity for
K� in the lumen. In the E1 conformation, a hydronium ion
(H3O�) binds the cytoplasmic region of the H�-K�-ATPase
enzyme. MgATP phosphorylates the catalytic subunit of the
H�-K�-ATPase initiating a conformational change. The ion-
binding site, which was previously oriented towards the cyto-
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plasm, alters so that the hydronium ion is exposed to the
extracytoplasmic region (the E2P form). In the E2P form, the
H3O� is released into the gastric lumen. Concomitantly, ex-
tracytoplasmic K� binds the ion-binding site leading to de-
phosphorylation of the catalytic subunit to form the E2K con-
formation. The E2K form is converted to E1K with the potas-
sium site now facing the cytoplasm. K� is released from the
ion-binding site following MgATP binding (47, 307, 371,
409) (FIGURE 5). The catalytic cycle of the H�-K�-ATPase
allows for the pumping of hydronium ions out of parietal cells,
while facilitating the uptake of K� ions.

D. Proton Pump Inhibitors

Proton pump inhibitors (PPIs) are a class of compounds that
inhibit gastric acid secretion through covalent binding of
the H�-K�-ATPase. Timoprazole was the first PPI synthe-
sized in 1975; however, omeprazole (Prilosec) was the first
PPI used clinically in 1989. Generally, PPIs have a core
structure that consists of substituted pyridylmethylsulfinyl
benzimidazoles (101). The PPI timoprazole inhibited gas-
tric acid secretion in vivo regardless of the stimulation path-
way (dibutyryl cAMP, histamine, or ACh). However, timo-
prazole was ineffective in the absence of acid transport by

the H�-K�-ATPase, although it could inhibit acid secretion
in the presence of acid transport. The findings from these
early experiments demonstrated that the initial PPIs were
acid activated, an important step in determining the inter-
action of PPIs with the H�-K�-ATPase (408). PPIs were an
improvement over H2-receptor antagonists, since the irre-
versible covalent binding of the H�-K�-ATPase pump re-
sults in a longer half-life of inhibition of gastric acid than for
H2 receptor blockers (101, 323, 352, 356). PPIs accumulate
in the secretory canaliculus of parietal cells after pyridine
protonation. After a second protonation on the surface of
the H�-K�-ATPase, PPIs are activated and form disulfide
bonds with one or more accessible cysteines (351). All PPIs
react with cysteine 813 on the �-subunit of the gastric H�-
K�-ATPase. The reaction of PPIs with cysteine 813 arrests
the H�-K�-ATPase enzyme in the E2 configuration. Differ-
ent PPIs bind additional sites on the extracytoplasmic sur-
face of the gastric H�-K�-ATPase �-subunit such as cys-
teine 892 for omeprazole and cysteine 822 for pantoprazole
(42, 322, 350). The luminal exposure of cysteine 813 and
892 of the H�-K�-ATPase likely contributes to the revers-
ibility of omeprazole (212). However, the covalent binding
of PPIs with cysteine 822 located in the transport domain of
the pump near ion binding sites results in inaccessibility to
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�

�
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FIGURE 5. Conformational changes of the H�-K�-ATPase. Phosphorylation and dephosphorylation of the
gastric H�-K�-ATPase results in conformational changes facilitating the transport of H3O� out of parietal cells
concurrently with influx of K�. Initially, a hydronium ion binds the cytoplasmic surface of the H�-K�-ATPase and
MgATP phosphorylates the protein to form the E1 conformation. In the E1 form, the ion-binding site faces the
parietal cell cytoplasm. Next, the E1 form undergoes a conformational change to the E2 form where the ion
binding site faces the gastric lumen. In this position the H3O� is released into the gastric lumen. In this E2

conformation, K� binds the ion site where H3O� was previously bound. The enzyme is dephosphorylated, and
a conformational change back to the E1 form results in the ion binding site facing the parietal cell cytoplasm
where K� is displaced by ATP binding (386, 387). Based on work on the Na�-K�-ATPase under physiological
conditions, the E2 to E1 conformational transition of the unphosphorylated enzyme is postulated to be the
rate-limiting step (232).
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reducing agents due to the intramembranous location re-
sulting in irreversibility of certain PPIs (42, 322, 350, 356,
394).

PPIs are weak bases. The weak base pKa of PPIs facilitates
accumulation in the high acidity space in the secretory
canaliculi of stimulated parietal cells or on the external
surface of the H�-K�-ATPase pump. This attribute of PPIs
is one of the reasons that they are so effective. The concen-
tration of PPIs in the secretory canaliculus, where binding to
the H�-K�-ATPase occurs, far exceeds the amount present
in the blood (356). The initial protonation of pyridines in
PPIs is followed by protonation of the benzimidazole moi-
ety. This requirement for a second protonation of PPIs in-
creases their therapeutic value because it allows for the
conversion of the pro-drug to the active form in close prox-
imity to the H�-K�-ATPase instead of in the lumen of the
stomach. The protonation that regulates activation of PPIs
results in irreversible binding of PPIs to accessible cysteines
of the H�-K�-ATPase through disulfide bonds.

E. Potassium Competitive Acid Blockers

While the advent of PPIs was a significant advancement
over the use of H2 receptor blockers, PPIs fail to meet the
needs of several acid-related disorders including nonerosive
reflux disease, severe erosive esophagitis, extra-esophageal
reflux disease, NSAID ulcer, and nonvariceal upper gastro-
intestinal bleeding (87, 171, 196, 252, 389). Potassium
competitive acid blockers (P-CAB) or acid pump antago-
nists (APAs) represent another type of proton pump inhib-
itor that may prove a more effective therapeutic for certain
gastric acid-related disorders. This class of acid blockers
results in a fast, effective, and reversible inhibition of gastric
acid secretion (334, 398). P-CABs inhibit acid secretion by
binding ionically to the H�-K�-ATPase following protona-
tion. The large size of P-CABs likely prevents the access of
K� cations to their binding site, thus blocking activation of
the H�-K�-ATPase by K� (20, 21, 119, 392, 394, 395).
Similar to other PPIs, P-CABs concentrate in the parietal cell
canaliculi (119, 150). The accumulation of P-CABs in this
highly acidic environment results in instantaneous protona-
tion which facilitates ionic binding to the gastric H�-K�-
ATPase and inhibition of acid secretion (20, 21, 119, 392,
394, 395). Administration of P-CABs results in a more
rapid increase in intragastric pH and inhibits gastric acid
secretion to a similar degree as PPIs (119, 441). However,
unlike PPIs, P-CAB duration of inhibition of acid secretion
is dependent on the level in the blood due to the reversible
K� competitive nature of P-CABs. While PPIs take repeat
doses to reach full effect, P-CABs are fully effective after the
first dose (16, 58, 167, 180, 184, 437). Thus P-CABs may
represent another generation of gastric acid blockers to add
to the compendium of therapeutic PPIs (12).

V. PARIETAL CELL LUMINAL POTASSIUM
CHANNELS

Gastric acid secretion is dependent on K�. Lee et al. (223)
were the first to develop an in vivo model that provided
evidence for the dependence of acid secretion on the secre-
tion of K� into the gastric lumen. KCNQ1 knockout mice
exhibit gastric mucosa hyperplasia, hypochlorhydria, and
elevated levels of gastrin compared with controls. More-
over, KCNQ1 knockout mice harbored nonfunctional pa-
rietal cells, indicating that KCNQ1 was likely required for
acid secretion. It was speculated that KCNQ1 maintains
low levels of intracellular K� through a K� efflux channel to
allow for exchange of H� and K� and thus acid secretion
(223). Consistent with these findings, inhibition of the
KCNQ1 channel in isolated rabbit gastric glands blocked
acid secretion to a similar degree as histamine receptor an-
tagonists and H�-K�-ATPase inhibitors (213). Thus
KCNQ1 likely plays a critical role for K� efflux during
gastric acid secretion. Functionally, KCNQ1 and its regu-
latory subunit KCNE2 are proposed to form a luminal K�

channel (85, 134, 159). The interaction of KCNE2 with
KCNQ1 results in a drastic change of KCNQ1 gating prop-
erties and current amplitude (383). KCNQ1 and KCNE2
are both highly expressed in parietal cells on the luminal
membrane (85, 213). KCNQ1/KCNE2 K� channels are
stimulated by cAMP, and low extracellular pH was found
to increase KCNQ1/KCNE2 current (158, 159). The
KCNQ1/KCNE2 channel complex allows for the transfor-
mation of the voltage-dependent KCNQ1 current to a volt-
age-independent current (383). Without its regulatory sub-
unit KCNE2, KCNQ1 is inhibited by a low extracellular
pH (109, 159, 293). However, when KCNQ1 is in complex
with KCNE2, K� conductance increases in an acidic envi-
ronment (109, 134, 159, 293). The importance of KCNE2
in acid secretion was demonstrated using KCNE2-deficient
animals. Similar to KCNQ1 knockout mice, KCNE2
knockout mice showed dramatically decreased parietal cell
proton secretion, altered parietal cell morphology, hyper-
plasia, and hypergastrinemia (316).

The exact localization of KCNE2/KCNQ1 remains contro-
versial. Human KCNE2 and KCNQ1 are recovered on anti-
H�-K�-ATPase-immunoisolated tubulovesicles (217). In
contrast, Nguyen et al. (271) described the distinct localiza-
tion of KCNQ1 in separate membrane compartments from
H�-K�-ATPase in unstimulated parietal cells in wild-type
mice and mice lacking the tubulovesicular membrane com-
partment in parietal cells (Atp4b-Y20A). In Atp4b-Y20A
mice, the H�-K�-ATPase is anchored in the secretory
canaliculi, and thus there are no H�-K�-ATPase-rich tubu-
lovesicles in these mice. The Atp4b-20A mice demonstrated
that the presence of H�-K�-ATPase at the secretory
canaliculi is not sufficient to regulate acid secretion. Inhibi-
tion of KCNQ1 decreased acid secretion in wild-type as
well as Atp4b-Y20A mice. These data suggested that traf-
ficking of KCNQ1 to parietal cell canaliculi following stim-
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ulation might independently regulate gastric acid secretion.
All of these studies and others provide convincing evidence
that KCNQ1/KCNE2 form a luminal K� channel that pro-
vides the extracellular K� necessary for proper acid secre-
tion (286, 368).

However, there are data to support a role for another K�

channel, the Kir family of inwardly rectifying K� channels,
in the regulation of gastric acid secretion and secretory
membrane recycling. Fujita et al. (111) demonstrated that
the Kir4.1, an inwardly rectifying K� channel, was ex-
pressed on the apical membrane of parietal cells in rat gas-
tric mucosa, suggesting a potential role for Kir4.1 in K�

recycling for proper H�-K�-ATPase activity. Other reports
confirmed Fujita’s findings and demonstrated expression of
Kir2.1 in parietal cells as well (197, 213, 240). Kir4.1 was
also demonstrated to coprecipitate with H�-K�-ATPase
from immunopurified tubulovesicles and stimulated secre-
tory membranes (197). Work in Kir4.1-deficient mice dem-
onstrated augmented acid secretion and suggested a role for
Kir4.1 in secretory membrane recycling (367). Song et al.
(367) suggested a role for parietal cell Kir4.1 channels in
balancing rapid K� loss via KCNQ1 and K� absorption
through the slower H�-K�-ATPase. Debate still exists as to
the degree to which each individual K� channel, KCNQ1/
KCNE2 and Kir4.1, is responsible for apical K� transport,
but it appears clear that without functioning of either chan-
nel there is a reduction in gastric acid secretion (104, 160).
Thus both channels likely play a role in the regulation of
gastric acid secretion through distinct mechanisms.

VI. PARIETAL CELL MORPHOLOGICAL
TRANSITION: THE MODEL FOR
PLASMA MEMBRANE RECYCLING

The unusual cell morphology in the parietal cell was origi-
nally documented by Camillo Golgi, who found unusual
wandering intracellular membranes, later designated as
Muller-Golgi tubules, in silver stains of stomach mucosa
(251). Electron microscopy documented the presence of an
intracellular canaliculus in parietal cells that ramified
within the parietal cell cytoplasm, but was contiguous with
the lumen (45, 107). The parietal cell cytoplasm was also
noted to have numerous tubulovesicular elements often in
apposition to canalicular membranes. More impressive in
electron microscopy studies was the morphological trans-
formation that parietal cells underwent following stimula-
tion, with marked expansion and dilation of the secretory
canaliculi and the elongation of microvillar-like structures
within canaliculi (44, 45, 106). Following acid secretory
stimulation, in concert with the expansion of the canalicu-
lar network, there was a marked loss of tubulovesicular
membranes within activated parietal cells. This morpholog-
ical alteration is one of the largest reversible membrane
alterations in mammalian cells.

The basis for the morphological transformation of parietal
cells was contentious for a number of years. Some groups
had suggested that the tubulovesicular network in parietal
cells was connected to the intracellular canaliculus and that
stimulation led to expansion of these elements through ac-
tivation of the proton pump. In 1977, Forte et al. (105) first
suggested a membrane recycling hypothesis to explain the
morphological transitions in parietal cells (FIGURE 6). This
hypothesis proposed that, in the resting parietal cell, tubu-
lovesicles and the secretory canaliculus were distinct com-
partments. Forte et al. proposed that stimulation with his-
tamine caused fusion of tubulovesicles with the canaliculus
leading to the formation of elongated microvilli-like struc-
tures. Upon cessation of the stimulation, tubulovesicular
membranes would be retrieved by endocytosis. This hy-
pothesis was the first to suggest the existence of membrane
recycling as a physiological process in cells. Rabbit gastric
tubulovesicles could be isolated to high purity from resting
gastric mucosa and were highly enriched for the �- and
�-subunits of the H�-K�-ATPase, now designated as
ATP4a and ATP4b, respectively (165, 222). One could also
prepare rather enriched populations of stimulus-associated
(SA) vesicles from stimulated parietal cells that contained
the subunits of the H�-K�-ATPase along with putative can-
alicular F-actin (165). Further studies identified canalicular
association of the F-actin binding phosphoprotein ezrin
(152, 436), which was also enriched in SA vesicles. These
latter studies suggested that ezrin defined the canalicular
membranes, distinct from tubulovesicles.

The controversy over the role of tubulovesicle fusion in
parietal cell morphological transformation was resolved
with the identification of vesicle trafficking proteins associ-
ated with the canalicular membrane. First, early studies
demonstrated the association of Rab small GTPases with
rabbit parietal cell tubulovesicle membranes (28, 380).
Then application of 3=-rapid amplification of cDNA ends
(RACE) to parietal cells revealed a number of unrecognized
Rab proteins including Rab11a, Rab25, and Rab14 (126).
In particular, further studies on Rab11a revealed that it was
highly enriched in parietal cells, and colocalized on tubulo-
vesicles with H�-K�-ATPase (59, 127). Rab11a redistrib-
uted to the apical canaliculus in concert with the H�-K�-
ATPase during stimulation (60). Immunoisolation of rabbit
tubulovesicles with antibodies against the H�-K�-ATPase
led to further insights into the association of trafficking
proteins, first with the identification of SCAMPs as well as
the vesicle SNARE protein VAMP-2 and target SNARE
protein syntaxin3 on tubulovesicles and the observation of
syntaxin1A on the membranes of the secretory canaliculus
(54, 59, 60, 292). Immunoisolation of human tubulo-
vesicles with H�-K�-ATPase antibodies confirmed these
findings in rabbit membranes and also identified the pres-
ence of other vesicle trafficking proteins including VAMP8
and syntaxin7 in association with the proton-pump rich
membranes (217). Together, these studies suggested that
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the tubulovesicular membranes and the secretory canalicu-
lus did indeed represent the model system for large-scale
regulated membrane recycling as proposed by Forte et al.
Indeed, expression of a dominant negative Rab11a
[Rab11a(N141I)] in parietal cells led to inhibition of acid
secretion (91). In followup studies, alterations in VAMP2
and syntaxin3 also inhibited the process of H�-K�-ATPase
translocation to the canalicular membranes (191, 229). It is
also possible that other Rab proteins, in addition to
Rab11a, are involved in H�-K�-ATPase recycling. For ex-
ample, expression of dominant-negative Rab27b(N133I)
can also inhibit parietal cell activation (372).

The recognition of Rab11a and v-SNAREs and t-SNAREs
in association with the parietal cell secretory apparatus all
supported the paradigm of regulated apical recycling in gas-
tric parietal cells. Indeed, investigations utilizing parietal
cell yeast-two hybrid libraries led to the identification of
two critical families of Rab11-interacting proteins, the my-
osin V motors (MYO5A and MYO5B) as well as the
Rab11-family interacting protein (Rab11-FIP) family (146,
218). Both Rab11-FIPs and MYO5B are highly expressed in
parietal cells, but they were subsequently confirmed as crit-
ical regulators of apical recycling in polarized epithelial cells
and generalized plasma membrane recycling in nonpolar-
ized cells (22, 62, 146, 218). These findings therefore sup-
port the status of the parietal cell as the largest manifesta-
tion of apical plasma membrane recycling.

VII. PHYSIOLOGICAL ROLE OF PARIETAL
CELLS IN GASTRIC MUCOSAL
HOMEOSTASIS

Detailed investigations by Karam and Leblond (187–190)
determined the patterns of cell differentiation from isthmal
progenitor cells, with short-lived surface mucous cells dif-
ferentiating towards the lumen and longer-lived parietal
cells and mucous neck cells migrating towards the base.
Mucous neck cells further redifferentiate into zymogen-se-
creting chief cells as they reach the gland base (190). While
traditionally the focus on parietal cells has related to acid
secretion, work over the past decade has brought increased
recognition of the function of parietal cells in general mu-
cosal homeostasis. Loss of parietal cells, or oxyntic atrophy,
is the pathological finding most associated with gastric can-
cer (97). Multiple studies have now connected the loss of
parietal cells with the development of metaplasia in the
corpus mucosa. In part, based on this association, a number
of investigators have evaluated roles for parietal cells other
than acid secretion.

Loss of parietal cells occurs during infection of the stomach
with Helicobacter species. The cause of parietal cell loss in
the face of Helicobacter infection remains unclear. Loss of
parietal cells can be replicated in rodent models with
chronic infection with either Helicobacter pylori or Helico-
bacter felis (108, 291, 349, 413, 414). The loss of parietal
cells appears to require the action of T cells, since T cell-

Resting Secreting

Late recycling Early recycling

FIGURE 6. Morphological changes in parietal cells that
accompany gastric acid secretion. This graphic derived
from the hand-drawn figure from John Forte depicts the
morphological stages in the course of parietal cell stimula-
tion (105). In the resting state, parietal cells contain many
mitochondria, numerous membrane tubulovesicles, and
collapsed intracellular canaliculi. Upon stimulation, exocy-
tosis results in fusion of the H�-K�-ATPase rich tubulo-
vesicles with the intracellular canaliculus, resulting in an
expanded secretory canalicular membrane and the elonga-
tion of apical microvilli-like structures. Following stimula-
tion, endocytosis occurs to retrieve the H�-K�-ATPase and
recycle the membrane to tubulovesicles in the resting state
and to prepare for the next stimulus and return.
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deficient mice do not display oxyntic atrophy in response to
Helicobacter felis infection (317). More recent studies have
suggested that cytokines individually or together may lead
to parietal cell death (57, 169). IL-17A induces loss of pa-
rietal cells in mouse models (48).

Experimental loss of parietal cells can be induced acutely
with parietal cell-toxic drugs (124, 170, 265, 275). In these
acute models, the loss of parietal cells is associated with
prominent changes in gastric mucosal lineages. Foveolar
hyperplasia (the expansion of surface mucous cells) devel-
ops rapidly after parietal cell loss, driven to a great extent by
elevations in gastrin (275, 291). At the same time, spasmo-
lytic polypeptide-expressing metaplasia (SPEM) develops
through transdifferentiation of chief cells into mucous cell
metaplasia (170, 265). The exact signals that coordinate
these lineage changes remain unclear, and a recent publica-
tion indicates that parietal cell loss alone is not sufficient to
induce SPEM (55). Interactions of parietal cells with intrin-
sic immune cells may lead to release of intermediate cyto-
kine regulators (157, 294, 295) that are also required for
induction of SPEM.

A. EGF Receptor Ligands

As noted above, EGF receptor ligands, including EGF and
TGF-�, are inhibitors of acid secretion (225, 226). Other
studies suggested that parietal cells were actually the major
source of TGF-� in the gastric mucosa (30). In addition,
other studies have demonstrated that parietal cells are also
a source for amphiregulin (3) and HB-EGF (263), both
potent ligands for the EGF receptor. These findings sug-
gested that EGF receptor ligands were released from pari-
etal cells in part as autocrine inhibitors of gastric acid se-
cretion. Nevertheless, other investigations demonstrated
that TGF-� could promote the expansion of surface cell
lineages at the expense of glandular lineages such as parietal
cells. The greatest impact of these growth factors on lineage
derivation is observed in patients with Ménétrier’s disease,
who show marked overproduction of TGF-� in the gastric
mucosa, resulting in massive foveolar hyperplasia as well as
loss of parietal cells and other glandular cells (86). Similar
results have been reported in metallothionein (MT)-TGF-�
transgenic mice following administration of oral zinc to
induce TGF-� overexpression (49, 86, 125, 274). More
recent investigations have suggested that expression of ac-
tive Kras in isthmal progenitor cells also induces expansion
of foveolar cells at the expense of glandular (parietal cell
and chief cell) lineage differentiation (75, 249).

B. Sonic Hedgehog

Members of the sonic hedgehog (Shh) family regulate lin-
eage development in many organs (234). Treatment of iso-
lated dog parietal cells with EGF led to upregulated expres-

sion of Shh in parietal cells, and Shh promoted histamine-
stimulated acid secretion (369). Later studies suggested that
Shh was released from parietal cells in concert with the
fusion of tubulovesicles with the apical canaliculus (444),
and Shh is processed into an active form by pepsinogen
(445). Shh release has been implicated in regulation of
stomach cell lineages through feedback regulation of acid
sensing (256). Loss of expression of Shh in gastric parietal
cells leads to elevations of gastrin and foveolar hyperplasia
(432). Similarly, inhibition of acid secretion by proton
pump inhibitors or IL-1� decreases the expression of Shh
(250, 405) and can be associated with oxyntic atrophy as-
sociated with H. pylori infection (344). Indeed, Shh appears
to play a critical role in regulating mucosal homeostasis in
the stomach (88), although the context of these effects ap-
pears variable. In mice with deletion of Shh in parietal cells,
H. pylori infection does not lead to oxyntic atrophy and
gastritis (344). Nevertheless, loss of Shh in parietal cells
inhibits the resolution of acute acetic acid ulcers in the
stomach (431). Overall, expression of Shh and perhaps
other hedgehog family members appears critical for muco-
sal restitution and mucosal protection.

VIII. REMAINING QUESTIONS FOR ACID
SECRETORY PHYSIOLOGY

Despite a number of prominent investigations during the
past 30 yr, the exact cellular mechanisms that trigger second
messenger-regulated acid secretion remain unknown. Al-
though phosphoproteins associated with histamine and
cholinergic stimulation have been identified (70, 72–74,
153, 259, 279, 287, 288, 390, 391, 416), the connection of
these phosphorylation events to the induction of tubulo-
vesicle fusion with the secretory canaliculus remains solely
correlative. Thus alterations in the expression of ezrin or
Lasp-1, the LIM and SH3 domain protein, can affect the
fusion of tubulovesicles with the canaliculus in parietal
cells, but the mechanisms of how these proteins act at a
molecular level to promote regulated membrane fusion re-
main undetermined. No mouse models targeting phosphor-
ylation sites have been characterized, so functional data
remain sparse. Of interest, a recent study has demonstrated
that a calcium channel resident in tubulovesicles, TRPML1
(ML1), is involved in cAMP-dependent stimulation of tu-
bulovesicle fusion with the canaliculus (325). This finding
suggests that discrete targets mediating the process of mem-
brane fusion remain to be definitively identified.

Another question relates to the sensing of luminal pH in the
stomach and how this regulates acid secretion. It has previ-
ously been assumed that G cells in the antrum or even ECL
cells throughout the corpus might be able to sense the gas-
tric lumen and respond to changes in acidity. Thus loss of
acid secretion, which leads to increases in gastrin levels,
would be triggered through G cells sensing of the lumen pH.
Nevertheless, recent identification of classes of tuft cells,
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which present a highly specialized sensory apparatus to-
wards the lumen (172, 330), has raised questions of
whether tuft cells are a major sensor of luminal contents,
including acid. Tuft cells are normally associated with the
neck region of the corpus gastric glands and near the pro-
genitor zone in the antrum (329). Importantly, following
loss of parietal cells in gastritis models of mice, there is an
increase in the number of tuft cells in the gastric mucosa
(76, 266, 329). This increase in tuft cell numbers appears to
be dependent on gastrin levels (76). Tuft cells can have
direct connections with sensory nerves in multiple organs
(332, 333), although these direct connections have not been
validated in the stomach. Such intrinsic nerve connections
could be involved in regulation of gastrin and histamine
release from enteroendocrine cells. Tuft cells are known to
release IL-25, which may stimulate the release of IL-13 and
amphiregulin from intrinsic mucosal immune ILC2 cells
(404). IL-13 and amphiregulin may have prominent effects
on both lineage derivation and acid secretion in the gastric
mucosa (294). Further studies are required to define the role
of tuft cell chemosensing to acid secretory physiology.

Finally, the full compendium of growth factors that can be
released from parietal cells remains unclear. Because of the
long-lived status of parietal cells, it seems likely that this
lineage is well placed to perform broad duties in the coor-
dination of lineage maturation in the corpus of the stomach.
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